Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 359: 120989, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678906

RESUMO

The efficient utilization of food waste (FW) resources through Food Waste Valorization (FWV) has received increasing attention in recent years. Various decision-making studies have been undertaken to facilitate FWV implementation, such as the studies on decision-making framework and FWV technology assessment. Food waste hierarchy is a widely discussed framework in FW management, but it was found too simplified and does not always contribute positively to environmental sustainability. Moreover, decision-making studies in FWV often focus on specific aspects of the food system and employ distinctive decision-making approaches, making it difficult to compare the results from different studies. Therefore, our literature review is conducted to provide a comprehensive understanding of FWV decision-making. This study identifies what decisions are needed, and three levels of decisions are revealed: system-level, FW stream-level, and FWV option-level. The assessment approaches and criteria used to support decision-making in FWV are also collected and analyzed. Building upon these findings, an hourglass model is synthesized to provide a holistic illustration of decision-making in FWV. This study untangles the complexities of FWV decision-making and sheds light on the limitations of current studies. We anticipate this study will make more people realize that FWV is a multidisciplinary issue and requires the collective participation of researchers, practitioners, policymakers, and consumers. Such collective engagement is essential to effectively address practical challenges and propel the transition of the current food system toward a more resource-efficient paradigm.

2.
Int J Food Microbiol ; 325: 108629, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32325344

RESUMO

High pressure processing is a mild preservation process that inactivates pathogenic and spoilage micro-organisms in food products, but preserves the fresh characteristics of a product. Compared to untreated product, an enhanced shelf life is obtained during refrigerated storage. Knowledge on the use of high pressure pasteurisation aimed for ambient storage is limited. The aim of this research was to investigate if a combination of high pressure and moderate heat could be used to produce a shelf-stable high-acid fruit product. Ascospores of the heat resistant fungi Talaromyces macrosporus and Aspergillus fischeri were added to fresh strawberry puree that served as a model system. The effect of the processing steps and storage at ambient temperature for 2 weeks was studied on viability of the ascospores. A preheating step at 69 °C/2 min resulted in full or partial activation of A. fischeri and T. macrosporus spores, respectively. The pressure build-up by the process without any holding time resulted in additional activation of spores. A combination of moderate heat (maximum 85-90 °C) and high pressure (500-700 MPa) for holding times up to 13 min inactivated these highly resistant spores much faster than a heat treatment alone. At Tmax = 85 °C and 600 MPa the spores of T. macrosporus and A. fischeri were inactivated by 5.0 and 5.5 log10 after 13 and 7 min, respectively. At Tmax = 85 °C the heat treatment alone did not reduce the viability of these spores up to 60 min of treatment. At Tmax = 90 °C the holding time of the combined pressure-heat treatment could be reduced to obtain the same degree of inactivation of the heat resistant fungi. In addition, treated and untreated ascospores in strawberry puree were stored for 14 days at room temperature to evaluate delayed outgrowth of spores. Untreated ascospores of A. fischeri were activated by storage in the puree. However, at conditions combining high pressure ≥ 600 MPa with Tmax ≥ 85 °C for 13 min, heat resistant fungi were successfully inactivated. This research showed that a combination of moderate heat and pressure can drastically improve the effectiveness to inactivate heat-resistant ascospores in a high-acid fruit product compared to a heat treatment, potentially resulting in a better product quality.


Assuntos
Aspergillus/crescimento & desenvolvimento , Pasteurização/métodos , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Fúngicos/crescimento & desenvolvimento , Talaromyces/crescimento & desenvolvimento , Microbiologia de Alimentos , Fragaria/microbiologia , Frutas/microbiologia , Temperatura Alta
3.
Int J Food Microbiol ; 316: 108418, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31877424

RESUMO

The aim of this study was to compare the sporicidal effect of the disinfectants peracetic acid (PAA) or hydrogen peroxide (H2O2) applied as a fog or as a liquid. The efficacy of fogging of the disinfectants was tested in a closed isolator cabinet using highly heat and chemical-resistant spores of Geobacillus stearothermophilus. Fogging of a 0.06% solution of PAA resulted in over 5-log reduction of spores in 10 min, whereas for PAA used in liquid form the same reduction was achieved in 4.5 min. The inactivation curves for fog and liquid were fitted using three different models (Linear with shoulder, Weibull, Gauss-Eyring). This showed a shoulder for the fog with an estimated length of 4.1 min, but the D values, calculated for the linear parts of the curves, were not significantly different (1.1 and 0.8 min for the PAA fog and solution, respectively). Similar results were obtained for a 12% H2O2 solution, albeit that H2O2 was less effective compared to PAA, requiring 60 min to reach 3-log reduction when applied as a fog, with an estimated shoulder of 18.5 min. Fogging of a 0.06% peracetic acid solution effectively inactivated G. stearothermophilus spores. Overall, the data show that fogging can be an effective method of applying disinfectants but that a shoulder in the inactivation curves should be considered in process design. This study provides inactivation kinetics for disinfection using PAA or H2O2-based fog, which can aid in selection and validation of process parameters for disinfection of contained areas by fogging.


Assuntos
Desinfetantes/farmacologia , Desinfecção/métodos , Geobacillus stearothermophilus/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Ácido Peracético/farmacologia , Aerossóis/farmacologia , Cinética , Esporos Bacterianos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...